A Convenient Method for Synthesis of Novel Cyclic Ethers (1R, 2R, 3R, 5S, 7S, 9R, 12R)-3-(t-Butyldimethylsilyl)oxy-7-methoxymethyl-oxy-2, 10-dimethyl-12-oxatricyclo [7.2.1. ${ }^{5,12}$] dodecane

Jie $\mathrm{YAN}^{1} *$, $\operatorname{Min} \mathrm{ZHU}^{2}$
${ }^{1}$ College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310032 ${ }^{2}$ College of Biological and Environmental Sciences, Zhejiang Shuren University, Hangzhou 310015

Abstract

Novel cyclic esters (1R, 2R, 3R, 5S, 7S, 9R, 12R)-3-(t-butyldimethylsilyl)oxy-7-methoxymethyloxy-2, 10 -dimethyl-12-oxatricyclo [7.2.1.0 ${ }^{5,12}$] dodecane were prepared when their precursor $\mathbf{1}$ was treated with $\mathrm{SOCl}_{2} /$ pyridine. A plausible mechanism was hypothesized.

Keywords: (1R, 2R, 3R, 5S, 7S, 9R, 12R)-3-(t-Butyldimethylsilyl)oxy-7-methoxymethyloxy-2, 10-dimethy-12-oxatricyclo [7.2.1.0 ${ }^{5,12}$] dodecane, synthesis, mechanism.

Coloradocin, a novel macrolide antibiotic from cultures of Actinoplanes coloradoensis ${ }^{1}$ exhibits activity against pathogenic anaerobic and microaerophilic species ${ }^{2}$. Because its low toxicity and substantial oral activity ${ }^{3,4}$, as well as its unusual structure ${ }^{5}$, several research groups initiated approaches towards the synthesis of coloradocin ${ }^{6}$, which culminated in the synthesis of 18-deoxynargenicin A_{1} by Kallmerten et al. ${ }^{7}$.

Scheme 1

[^0]Scheme 2

Scheme 3

Scheme 4

In order to synthesize the oxygen bridged decalin subunit of coloradocin 2 (Scheme 1), we prepared (1R, 2S, 3R, 4R, 6R, 8S, 10R)-2-benzyloxy-4-(t-butyldimethylsilyl)oxy-10-(1-hydroxyethyl)-8-methoxymethyloxy-2-methyl [4.4.0] decane $\mathbf{1}^{8}$ as starting material. We found when 1 was treated with $\mathrm{SOCl}_{2} / \mathrm{pyridine}$ in short time at $0^{\circ} \mathrm{C}$, this result was different from that obtained by Geossinger ${ }^{9}$, novel diastereomeric mixture of cyclic ethers (1R, 2R, 3R, 5S, 7S, 9R, 12R)-3-(t-butyldimethylsilyl)-oxy-7-methoxymethyloxy2, 10-dimethy-12-oxatricycl [7.2.1.0 ${ }^{5,12}$] dodecane 3 (ratio 60:40 by ${ }^{1} \mathrm{H}$-NMR) were the only products in 96.5% yield, but not the desired olefine 2 (Scheme 2).

The unusual result was exciting because the normal method for preparation of cyclic ethers was the intramolecular reaction of hydroxyl and alkene functions ${ }^{9-12}$, this method for cyclic ethers had not been reported before. A plausible mechanism was as follows: when 1 was treated with SOCl_{2}, the intermediate $\mathbf{4}$ was formed, then Cl^{-}attacked the benzyl group, following an intramolecular substitution to give product $3 . \mathrm{Cl}^{-}$hardly attacked the leaving group directly, because benzyloxy group blocked the attack route (Scheme 3).

In order to prove above mechanism, we prepared compound 5^{8} and treated it with $\mathrm{SOCl}_{2} /$ pyridine in the same reaction conditions. After workup we got the desired major
product $\mathbf{6}^{8}$ and also separated the minor chloride 7^{8} (Scheme 4).
General procedure for the synthesis of compounds 3:
Under argon atmosphere, $5 \mu \mathrm{~L}$ freshly distilled $\mathrm{SOCl}_{2}(0.058 \mathrm{mmol})$ was added in 0.5 mL dry pyridine and the mixture was cooled to $0^{\circ} \mathrm{C}$. A solution of $5.5 \mathrm{mg} 1(0.0116$ mmol) in 1 mL dry pyridine was added slowly. After the addition was completed the mixture was stirred for 0.5 h at $0^{\circ} \mathrm{C}$. The reaction was quenched with sat. aq NaHCO_{3}, the water layer was extracted with ethyl acetate, the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation the crude product was purified by flash chromatography on silica gel with petroleum ether/ethyl acetate (5:1) to afford $4.1 \mathrm{mg}(96.5 \%)$ inseparable two diastereomers 3 (ratio 60:40) as colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta_{\mathrm{ppm}}\right)$: -0.003 (s, 3H); 0.00 (s, 3H); 0.91 (s, 9 H); 1.16 (d, $3 \mathrm{H}, \mathrm{J}=5.8 \mathrm{~Hz}$); 1.22 (d, $3 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}$); 1.41-1.49 (m, 2H); 1.55-1.69 (m, 4H); 1.78 (d, 1H J=4.1Hz); 1.92-2.03 (m, 2H); 2.09 (dd, 1H, $J=22.5,11.1 \mathrm{~Hz}$); 2.94 (dd, 1 H , $J=10.3,3.5 \mathrm{~Hz}$); $3.04(\mathrm{~s}, 3 \mathrm{H}) ; 3.46-3.56(\mathrm{~m}, 2 \mathrm{H}) ; 3.65-3.69(\mathrm{~m}, 1 \mathrm{H}) ; 4.31(\mathrm{~d}, 1 \mathrm{H}$, $J=6.8 \mathrm{~Hz}$); 4.35 (d, 1H, $J=6.8 \mathrm{~Hz}$); IR (film, cm^{-1}): 2930, 2910, 2850; EI-MS (3KV, m/z): $384\left(\mathrm{M}^{+}, 100\right)$; HRMS: Calcd. for $\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{Si}=384.6366$, found $\mathrm{M}^{+}=384.6334$.

References and Notes

M. Jackson, J. P. Karwowski, R. J. Theriault, et al., J. Antibiot., 1987, 40, 1375
R. R. Rasmussen, M. H. Scherr, D. N. Whittern, et al., J. Antibiot., 1987, 40, 1383.
W. D. Celmer, G. N. Chmurny, C. E. Moppett, et al., J. Am. Chem. Soc., 1980, 102, 4203.
B. J. Magerlein, S. A. miszak, J. Antibiot., 1982, 35, 111.
E. Goessinger, S. Alexander, S. Natascha, Tetrahedron, 2000, 56, 2007.
6. R. C. F. Jones, J. H. Tunnicliffe, Tetrahedron Lett., 1985, 26, 5845; W. R. Roush, J. W. Coe, Tetrahedron Lett., 1987, 28, 931; J. W. Coe, W. R. Roush, J. Org. Chem., 1989, 54, 915; J. M. Evans, J. Kallmerten, Synlett, 1992, 269.
7. D. J. Plate, J. Kallmerten, J. Am. Chem. Soc., 1988, 110, 4041.
8. Spectral data: 1: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 0.00(\mathrm{~s}, 6 \mathrm{H}) ; 0.85(\mathrm{~s}, 9 \mathrm{H}) ; 0.97$ (d, 3H, $J=6.3 \mathrm{~Hz}) ; 1.15(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}) ; 1.46-1.54(\mathrm{~m}, 2 \mathrm{H}) ; 1.58-1.86(\mathrm{~m}, 5 \mathrm{H}) ; 1.97-2.14(\mathrm{~m}, 1 \mathrm{H}) ;$ 2.40 (ddd, $1 \mathrm{H}, J=11.6,4.3,4.3 \mathrm{~Hz}$); 2.85 (dd, $1 \mathrm{H}, J=11.1,4.8 \mathrm{~Hz}$); 3.00 (ddd, $1 \mathrm{H}, J=17.8,9.8$, 4.5 Hz); 3.07 (ddd, $1 \mathrm{H}, \mathrm{J}=12.0,12.0,3.0 \mathrm{~Hz}$); $3.10-3.17(\mathrm{~m}, 1 \mathrm{H}) ; 3.31(\mathrm{~s}, 3 \mathrm{H}) ; 3.73$ (b, 1H); $3.86-3.90(\mathrm{~m}, 1 \mathrm{H}) ; 4.01(\mathrm{~d}, 1 \mathrm{H}, J=11.1 \mathrm{~Hz}) ; 4.35(\mathrm{~d}, 1 \mathrm{H}, J=11.1 \mathrm{~Hz}) ; 4.52(\mathrm{~d}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz})$; $4.60(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}) ; 7.23-7.29(\mathrm{~m}, 5 \mathrm{H})$. IR (film, cm^{-1}): 3385, 3020, 2950. EI-MS (3KV, m / z): $493\left(\mathrm{M}^{+}, 35.7\right)$. HRMS: Calcd. for $\mathrm{C}_{28} \mathrm{H}_{48} \mathrm{O}_{5} \mathrm{Si}=492.7632$, found $\mathrm{M}^{+}=492.7601$. 5: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 0.00(\mathrm{~s}, 3 \mathrm{H}) ; 0.01(\mathrm{~s}, 3 \mathrm{H}) ; 0.85(\mathrm{~s}, 9 \mathrm{H}) ; 0.98(\mathrm{~d}, 3 \mathrm{H}$, $J=6.3 \mathrm{~Hz}) ; 1.07$ (d, $3 \mathrm{H}, J=6.3 \mathrm{~Hz}$); 1.14 (dd, $1 \mathrm{H}, J=13.8,13.8 \mathrm{~Hz}$); 1.42 (d, $1 \mathrm{H}, J=13.6 \mathrm{~Hz}$); $1.61(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.9 \mathrm{~Hz}) ; 1.71-1.87(\mathrm{~m}, 4 \mathrm{H}) ; 1.91-1.99(\mathrm{~m}, 1 \mathrm{H}) ; 1.99-2.13(\mathrm{~m}, 2 \mathrm{H}) ; 3.03$ (dd, $1 \mathrm{H}, J=11.2,3.7 \mathrm{~Hz}) ; 3.05-3.12(\mathrm{~m}, 1 \mathrm{H}) ; 3.82-3.96$ (m, 5H); 4.35 (b, 1H); 4.46 (d, 1H, $J=11.6 \mathrm{~Hz}) ; 4.72(\mathrm{~d}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}) ; 7.27-7.31(\mathrm{~m}, 5 \mathrm{H})$. IR (film, cm^{-1}): 3420, 3032, 2950. EI-MS (3KV, m/z): $491\left(\mathrm{M}^{+}, 48.6\right)$. HRMS: Calcd. for $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{O}_{5} \mathrm{Si}=490.7473$, found M^{+} $=490.7434 .6:{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right):-0.001(\mathrm{~s}, 3 \mathrm{H}) ; 0.00(\mathrm{~s}, 3 \mathrm{H}) ; 0.90(\mathrm{~s}, 9 \mathrm{H}) ;$ $1.16(\mathrm{~d}, 3 \mathrm{H}, J=5.8 \mathrm{~Hz}) ; 1.23(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}) ; 1.43-1.52(\mathrm{~m}, 2 \mathrm{H}) ; 1.55-1.65(\mathrm{~m}, 4 \mathrm{H}) ; 1.75$ (d, $1 \mathrm{H} J=4.1 \mathrm{~Hz}$); 1.96-2.03 (m, 2H); 2.09 (dd, 1H, $J=21.5,11.0 \mathrm{~Hz}$); 2.94 (dd, 1H, $J=10.3$, $3.5 \mathrm{~Hz}) ; 3.08(\mathrm{~s}, 3 \mathrm{H}) ; 3.53-3.60(\mathrm{~m}, 2 \mathrm{H}) ; 3.71-3.74(\mathrm{~m}, 1 \mathrm{H}) ; 3.75-3.89(\mathrm{~m}, 4 \mathrm{H}) ; 4.33(\mathrm{~d}, 1 \mathrm{H}$, $J=6.8 \mathrm{~Hz}$); $4.38\left(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}\right.$). IR (film, cm^{-1}): 2933, 2910, 2855. EI-MS (3KV, m/z): 382 (M^{+}, 21.1). HRMS: Calcd. for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Si}=382.5880$, found $\mathrm{M}^{+}=382.5867$. 7: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400MHz, $\mathrm{CDCl}_{3}, \delta \mathrm{ppm}$): -0.01- 0.01 (m, 6H); 0.84 (s, 4.5 H); 0.85 (s, 4.5 H); 0.88 (d, 1.5 H , $J=6.6 \mathrm{~Hz},) ; 0.99(\mathrm{~d}, 1.5 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz}) ; 1.17(\mathrm{dd}, 3 \mathrm{H}, \mathrm{J}=13.4,6.4 \mathrm{~Hz}) ; 1.32-1.53(\mathrm{~m}, 2 \mathrm{H}) ;$ 1.54-2.08 (m, 6H); 2.14 (qt, 1H, $J=11.6,2.5 \mathrm{~Hz}$); 2.46-2.58 (m, 1H); 2.93 (dd, $0.5 \mathrm{H}, J=11.4$, 3.8 Hz); 3.06 (ddd, $0.5 \mathrm{H}, J=20.4,9.6,5.0 \mathrm{~Hz}$); 3.48 (ddd, $0.5 \mathrm{H}, J=11.7,6.3,2.2 \mathrm{~Hz}$); 3.57 (ddd,
$0.5 \mathrm{H}, \mathrm{J}=10.4,10.4,4.7 \mathrm{~Hz}) ; 3.79-3.99(\mathrm{~m}, 4 \mathrm{H}) ; 4.36(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=11.6,2.2 \mathrm{~Hz}) ; 4.51-4.58(\mathrm{~m}$, $1.5 \mathrm{H}) ; 5.03-5.12(\mathrm{~m}, 0.5 \mathrm{H}) 7.19-7.31(\mathrm{~m}, 5 \mathrm{H})$. IR (film, $\left.\mathrm{cm}^{-1}\right): 3028$, 2932, 2857. EI-MS (3KV, m/z): $508\left(\mathrm{M}^{+}, 100\right)$. HRMS: Calcd. for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{ClO}_{4} \mathrm{Si}=508.1848$, found M^{+} $=508.1802$.
9. E. Goessinger, S. Alexander, S. Natascha, Tetrahedron, 2001, 57, 3045.
10. B. M. Trost, M. J. Krische, J. Am. Chem. Soc., 1999, 121, 6131.
11. U. E. Udodong, C. Srinivas Rao, B. Fraser-Reid, Tetrahedron, 1992, 48, 4713.
12. L. T. Rossano, D. J. Plata, J. Kallmerten, J. Org. Chem., 1988, 53, 5189.

Received 2 April, 2004

[^0]: * E-mail: jieyan87@hotmail.com

